Left-Degenerate Vacuum Metrics

Jerzy F. Plebanski
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional,
México 14, Distrito Federal, México

and

Ivor Robinson
The University of Texas at Dallas, Richardson, Texas 75080
(Received 21 May 1976)

For all complex space-times in which the self-dual part of the Weyl tensor is algebra-}
ically degenerate, Einstein's vacuum equations are reduced to a single differential equa-
tion of the second order and second degree.

It is well known that Einstein's vacuum equa-
tions can be simplified considerably if the space-
time admits a congruence of null shear-free geo-
desics, or if the Weyl tensor is anti-self-dual. Here we shall consider a broad class of complex metrics which includes both these as special cases.

We impose only one restriction on our space-
time: that it admits a congruence of totally null surfaces. To describe them, we introduce the surface element

$$\Sigma_{ab} = u^a v_b - v^a u_b ,$$

and the expansion form

$$\theta = \theta_a dx^a = \frac{1}{2} (u^a_v dv - v^a_u du) ,$$

where u and v are functionally independent scalars, constant on each surface. By a totally null surface we mean a differentiable two-space to which all tangent vectors are null. It follows that du and dv are null and mutually orthogonal. From this, one can easily prove that

$$\Sigma_{ab} \Sigma^{re} + \Sigma_{eb} \theta^e = 0 .$$

In the special case $\theta = 0$, not merely is Σ covari-
antly constant on each surface, but the equations

$$X^e_r \Sigma^{rb} = 0$$

have a tetrad of independent solutions. A totally null surface, therefore, is geodesic by definition, and plane if its expansion vector is zero.

The surface element is self-dual or anti-self-
dual. We describe the congruence as left-handed in the first case, and right-handed in the second. A congruence of null shear-free geodesics is the intersection of a left-handed congruence of totally null surfaces with a right-handed one. Here, of course, we are dealing with only one congruence. We take it to be left-handed.

For our purposes, the empty-space equations fall naturally into three classes: first, the three surface equations,

$$\Sigma_a^b R_{pa} \Sigma^{eb} = 0 ;$$

second, the central equations, comprising $R = 0$ and the three remaining equations of

$$R_{ab} \Sigma^{eb} = 0 ;$$

and third, the three residual equations of $R_{ab} = 0$. Since Σ is self-dual, null, and closed, the equa-
We use them to put $\varphi = ay - bx + c$, with constant a, b, and c. The expansion form is now given by

$$\theta = \varphi (a \, du + b \, dv).$$

The metric belongs to the Plebanski-Schild class,

$$ds^2 = ds_0^2 + 2\varphi^{-2}(\sigma \, du + 2\beta \, dv),$$

where ds_0^2 is flat, while du and dv are null and orthogonal. In the special case

$$\Delta = \varphi^{-2}(\sigma \, q - 6\beta^2) = 0,$$

it reduces to the Kerr-Schild form.6

The central equations are more complicated. After some manipulation, one finds that the general solution contains three disposable functions: $\Pi(u, v, x, y)$, $f(u, v)$, and $g(u, v)$. It may be written as

$$\varphi^{-3}/\theta = \xi f - (\varphi^{-2}\Pi)_y,$$

$$\varphi^{-3}/\eta = \eta g - (\varphi^{-2}\Pi)_x,$$

$$2\varphi^{-3}/\theta = \xi f + (\varphi^{-2}\Pi)_y + (\varphi^{-2}\Pi)_x,$$

where $\xi = f$ and $\eta = g$ for $\theta \neq 0$, while $\xi = \xi x$ and $\eta = \xi y$ for $\theta = 0$. One can derive the second case as a limit of the first. The residual equations take the form

$$E_{xx} = E_{xy} = E_{yy} = 0,$$

with the integral

$$2E = y\alpha(u, v) - x\beta(u, v) + \gamma(u, v),$$

where E is constructed from a, b, c, f, g, and Π. This is our one remaining field equation.

In the diverging case, we obtain $a = -b = 1$, $c = 0$, $f = g = \frac{1}{2}\sqrt{\mu}$, by specializing the coordinates, and using the transformation

$$f \rightarrow f + 2ak, \quad g \rightarrow g + 2bk,$$

$$\Pi \rightarrow \Pi + k\varphi^3(fy - gx + k\varphi),$$

where k is a disposable function of u and v. We then find that

$$E_\Delta = \Delta + \varphi^{-2}(\Pi_x - \Pi_y)^2 + \frac{1}{2}\mu\varphi(\Pi_x + \Pi_y) - 3\mu\Pi + \varphi^{-1}(\Pi_{xv} + \Pi_{yy}) - \frac{1}{4}(x - y)(x\mu_u - y\mu_v).$$

We make μ constant and put $\alpha = \beta$ by specializing the coordinates further and using the transformation

$$\Pi \rightarrow \Pi + \frac{1}{2}\varphi^{-2}(\alpha, \beta, u, v), \quad \alpha = \alpha + t_u + l_v, \quad \beta = \beta - t_u - l_v.$$

The self-dual components of the Weyl tensor are given by7

$C^{(5)} = C^{(4)} = 0$, $C^{(3)} = -2\mu\varphi^3$, $C^{(2)} = 2\beta\varphi_5$,

$$C^{(1)} = 2\varphi^3\left[y_\beta_\alpha - x_\beta_\alpha - 2\beta(\Pi_x - \Pi_y) + (\theta_u + \theta_v)\left\{ \frac{1}{2} y - \mu\varphi^{-1/2}\theta_x + \theta_y \right\} \varphi^{-3/2}\Pi \right];$$

the anti-self-dual components, by

$$C^{(m)} = 2\varphi^3\delta_\alpha^n \delta_\beta^m \Pi, \quad n = 1, \ldots, 5.$$
In the plane case, it is convenient to put $\phi = 1$. We then have

$$\Xi = \Delta + \delta_u \Pi_x + \delta_v \Pi_y + \frac{1}{2}(y\delta_u - x\delta_v)(yf - xg),$$

where

$$\delta_u \equiv \delta_u + f, \quad \delta_v \equiv \delta_v + g.$$

We can make $\alpha = \beta = \gamma = 0$ by means of a transformation on Π; but this has the effect of introducing into the metric additional functions ρ, q, and r of u and v:

$$\phi' = -\Pi_{yy} + p + \frac{3}{8}xf, \quad \phi = -\Pi_{xx} + q + \frac{3}{8}yg, \quad \phi' = \Pi_{xy} + r + \frac{1}{8}(yf + xg).$$

When the field equation is satisfied, the Weyl tensor is given by

$$C^{(5)} = C^{(4)} = C^{(3)} = 0, \quad C^{(2)} = f_y - g_u, \quad C^{(1)} = (y\delta_u - x\delta_v)C^{(2)} - 2\delta_u^2\rho - 2\delta_u^2q + 4\delta_u\delta_vr,$$

and

$$\bar{C}^{(n)} = 2\delta_u\delta_v\delta_u\delta_v^{n-1}II, \quad n = 1, \ldots, 5.$$

Without loss of generality, we can make one function zero in each of the sets $\{f, g\}$ and $\{\rho, q, r\}$; if the Weyl tensor is left-null, we can make $f = g = 0$; if left-flat, $f = g = \rho = q = r = 0$.

One can deal with Einstein-Maxwell vacuum equations in much the same way, provided that one takes

$$\Sigma_{ab}F^{ab} = 0.$$

The surface equations are unaltered; Maxwell's equations give

$$F_{ab}dx^a \wedge dx^b = \epsilon(du \wedge dx + dv \wedge dy) + (\delta + x\epsilon_u - y\epsilon_v)du \wedge dv$$

$$+ \phi[H_{xx}e^2 \Lambda e^3 + H_{xy}e^1 \Lambda e^4 + H_{yy}(e^1 \Lambda e^2 + e^2 \Lambda e^3)],$$

where the wedges indicate antisymmetrical tensor multiplication, ϵ and δ are disposable functions of u and v only, while H is subject to

$$H_{uu} + H_{vv} = \delta H_{xx} + 2 \delta H_{yy} + 2 \delta H_{xy};$$

and the remaining equations integrate in much the same way as in the purely gravitational system.

There is an interesting formal resemblance between the roles of Π in the last metric and H here.

The present work might well simplify the problem of finding real degenerate solutions in the case that has so far proved most refractory: that of twisting rays. Of greater interest, however, is the possibility of moving in the opposite direction: not specializing the anti-self-dual part of the Weyl tensor, but removing the present restriction on its self-dual part. This would presumably involve the introduction of a second Hertz function \tilde{H}. Our conjecture is that Einstein's equations in the most general complex case could be reduced to a pair of differential equations of the second order and second degree.

We are grateful to Istvan Ozsvath and J. D. Finley for enlightening discussions.

*On leave of absence from the University of Warsaw, Warsaw, Poland.

7. The expression for $C^{(1)}$ given here was derived by J. D. Finley, III, and A. Garcia.

8. Details of this generalization will be given in a paper by A. Garcia and the present authors.