Real Einstein spaces constructed via linear superposition of complex gravitational fields: the concrete case of non-twisting type N solutions

This content has been downloaded from IOPscience. Please scroll down to see the full text.
1995 Class. Quantum Grav. 12 1093
(http://iopscience.iop.org/0264-9381/12/4/016)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 148.247.185.21
This content was downloaded on 18/04/2014 at 17:50

Please note that terms and conditions apply.
Real Einstein spaces constructed via linear superposition of complex gravitational fields: the concrete case of non-twisting type N solutions

Jerzy F Plebanski† Héctor García-Compean and Alberto García-Díaz
Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Apdo postal 14-740, CP 07000 Mexico City, Mexico

Received 12 July 1994

Abstract. By means of a linear superposition of a couple of tetrads, determining a self-dual type N flat space and an anti-self-dual flat type N field, the most general non-twisting type N real vacuum solution of the Einstein equation is constructed.

PACS number: 0420J

1. Introduction

In spite of the big achievements of complex relativity theory [1–4], its contribution in the determination of real solutions is rather modest, due to the sophisticated procedure [5] to be used to accomplish a 'real cut' of a given complex solution of the (complex) Einstein equations.

In [6] 'one sided' $G \times [-]$, $D \times [-]$ and $N \times [-]$ complex solutions of the complex Einstein equations were provided. The authors expressed at that time the hope that such solutions could be important 'as basic and elementary bricks which, through a procedure of synthesis (at present [1976] unknown) would generate physical real solutions'.

Besides the Rozga procedure, there exists a simple mechanism based on a linear superposition of the basis 1-forms, corresponding to one sided self-dual and anti-self-dual gravitational fields, which permits one to construct real solutions from complex ones. This approach is useful, at least, for certain families of solutions. For instance, accomplishing a linear superposition of the tetrads of the $D \times [-]$ and $[-] \times D$ fields, from (5.2) of [6], one obtains the real $D \times D$ Plebanski–Demianski gravitational field.

In this brief report we are concerned with a linear superposition of self-dual and anti-self-dual non-twisting type N complex spaces to build up a real solution of the Einstein equations.

We recall that working within the null tetrad formalism, the metric is given by

$$g = 2e^1 \otimes e^2 + 2e^3 \otimes e^4$$ \hspace{1cm} (1)

and the connections 1-forms $\Gamma_{ab} = \Gamma_{[ab]}$ are determined from the first Cartan structure equations

$$de^a = e^b \wedge \Gamma_{ab}.$$ \hspace{1cm} (2)

† On leave of absence from Warsaw University, Poland.
The second structure Cartan equations, within which the vacuum Einstein equations are in-built, can be decoupled into a self-dual and an anti-self-dual subspace of the space of 2-forms. The self-dual sector is given by

\[A := \text{d}(\Gamma_{42} + \Gamma_{42} \wedge (\Gamma_{12} + \Gamma_{34}) = \frac{1}{4} C^{(5)} S^{11} + \frac{1}{2} C^{(4)} S^{12} + \frac{1}{4} C^{(3)} S^{22} \]

\[B := \text{d}(\Gamma_{12} + \Gamma_{34}) + 2\Gamma_{42} \wedge \Gamma_{31} = \frac{1}{2} C^{(5)} S^{11} + C^{(3)} S^{12} + \frac{1}{2} C^{(2)} S^{22} \]

\[C := \text{d}(\Gamma_{34} + (\Gamma_{12} + \Gamma_{34}) \wedge \Gamma_{31} = \frac{1}{4} C^{(5)} S^{11} + \frac{1}{2} C^{(4)} S^{12} + \frac{1}{4} C^{(3)} S^{22} \] \hspace{1cm} (3)

where \(S^{AB} (A, B = 1, 2) \) are the self-dual basis 2-forms.

\[S = 2e^{A} \wedge e^{B} \]

\[S^{11} = e^{1} \wedge e^{2} + e^{3} \wedge e^{4} \]

\[S^{22} = 2e^{3} \wedge e^{4} \]

\[* S^{AB} = S^{AB} \] \hspace{1cm} (4)

The asterisk \(* \) denotes the Hodge star operation: for any \(p \)-form \(\omega \) one defines a \(p' \)-form \(*\omega \), with \(p' = 4 - p \), by

\[* \omega = \frac{1}{p!} \frac{1}{p'}! \exp[\frac{1}{2} i \pi (pp' - 2)] e^{\alpha_{1}...\alpha_{p\prime}} \omega_{\alpha_{1}...\alpha_{p}} e^{\beta_{1}...\beta_{p'}} \wedge ... \wedge e^{\beta_{p'}}. \]

The coefficients \(C^{(a)} \), \(a = 1, \ldots, 5 \), are the Weyl complex coefficients representing the Weyl conformal tensor. The anti-self-dual sector, coexisting with the self-dual one, is given by

\[\overline{A} := \text{d}(\Gamma_{41} + \Gamma_{41} \wedge (\Gamma_{34} - \Gamma_{12}) = \frac{1}{4} \overline{C}^{(5)} \overline{S}^{11} + \frac{1}{2} \overline{C}^{(4)} \overline{S}^{12} + \frac{1}{4} \overline{C}^{(3)} \overline{S}^{22} \]

\[\overline{B} := \text{d}(\Gamma_{34} - \Gamma_{12}) + 2\Gamma_{41} \wedge \Gamma_{32} = \frac{1}{2} \overline{C}^{(5)} \overline{S}^{11} + \overline{C}^{(3)} \overline{S}^{12} + \frac{1}{2} \overline{C}^{(2)} \overline{S}^{22} \]

\[\overline{C} := \text{d}(\Gamma_{32} + (\Gamma_{34} - \Gamma_{12}) \wedge \Gamma_{32} = \frac{1}{4} \overline{C}^{(5)} \overline{S}^{11} + \frac{1}{2} \overline{C}^{(3)} \overline{S}^{12} + \frac{1}{4} \overline{C}^{(1)} \overline{S}^{22} \] \hspace{1cm} (5)

where the anti-self-dual basis 2-forms \(\overline{S}^{AB} \) are

\[\overline{S}^{11} = 2e^{A} \wedge e^{B} \]

\[\overline{S}^{12} = -e^{A} \wedge e^{B} \]

\[\overline{S}^{22} = 2e^{A} \wedge e^{B} \] \hspace{1cm} (6)

For real Einstein spaces one requires:

\[\text{c.c.} \, e^{1} = \overline{e}^{1} \]

\[\text{c.c.} \, e^{2} = \overline{e}^{2} \]

\[\text{c.c.} \, e^{3} = \overline{e}^{3} \]

\[\text{c.c.} \, e^{4} = \overline{e}^{4} \] \hspace{1cm} (7)

where c.c. stands for complex conjugation. In complex relativity one does not impose the above relations on the 1-forms \(e^{A} \), the 2-forms \(S^{AB} \) and \(\overline{S}^{AB} \), and the Weyl curvature coefficients \(C^{(a)} \) and \(\overline{C}^{(a)} \).

From the point of view of complex relativity one may build up spaces of the form:

\[\text{any Petrov-type space} \oplus \text{flat space} \]

by requiring the vanishing of the Weyl curvature coefficients \(C^{(a)} \), describing the curvature of the anti-self-dual subspace. Of course, one can proceed in the converse direction, namely

\[\text{flat space} \oplus \text{any Petrov-type space} \]

There arises an obvious question: can one construct real solutions of the Einstein equations via a simple procedure, say a linear superposition of the complex one-sided solutions?

The answer is positive at least for certain classes of one-sided solutions, as we shall see from a concrete example.
2. Superposition of one-sided Petrov type N fields

We shall show that a linear superposition, at the level of tetrads, of Petrov type N one-sided fields, $N \otimes [0]$ and $[0] \otimes N$, produces a real solution of the Einstein equations, i.e. a solution $N \otimes N$ from the point of view of complex relativity, which allows a real cut.

Let us consider a gravitational field given in the complex chart $\{\xi, \bar{\xi}, r, t\}$ by the tetrad

$$e^1(s) = d(r\xi) + \beta dt + r[-2f + \xi f,\xi] dt$$
$$e^2(s) = d(r\bar{\xi}) + \beta dt + r\bar{\xi} f,\bar{\xi} dt$$
$$e^3(s) = -d(r\xi \bar{\xi}) + [\alpha + \xi r(2f - \xi f,\xi)] dt$$
$$e^4(s) = dr + [\bar{\epsilon} + r f,\xi] dt$$

(8)

where α and ϵ are real constants, β is a complex parameter and $f(\xi, t)$ is an arbitrary function of ξ and t with non-vanishing third derivative $f,\xi\xi\xi \neq 0$. The italic letter s is used in $e^s(s)$ to denote the self-dual character of the considered field. The Ricci connections associated with the tetrad above (8) are

$$\Gamma_{42} = 2[f - \xi f,\xi + \frac{1}{2}\xi^2 f,\xi\xi] dt$$
$$\Gamma_{12} + \Gamma_{34} = 2(f,\xi - \xi f,\bar{\xi}) dt$$
$$\Gamma_{51} = f,\xi \bar{\xi} dt$$

(9)

while

$$\Gamma_{41} = 0 \quad \Gamma_{34} - \Gamma_{12} = 0 \quad \Gamma_{32} = 0.$$

(10)

Hence, from the second Cartan equations one establishes that the considered field is a $N \otimes [0]$ space. The Weyl curvature coefficients $C^{(a)}$, corresponding to the type N self-dual field, are determined by

$$C^{(a)} = 2(-\bar{\xi})^{(a-1)}C \quad C := -\frac{1}{\psi r} f,\xi\xi\xi \neq 0 \quad a = 1, 2, \ldots, 5$$

$$\psi := \alpha + \beta \xi + \bar{\beta} \bar{\xi} + \epsilon \xi \bar{\xi}.$$

(11)

Of course, the curvature corresponding to the anti-self-dual sector is zero, as becomes apparent from equations (5) when considering (10). Thus, $C^{(a)} = 0$.

On the other hand, one determines an anti-self-dual $[0] \otimes N$ type N gravitational field, in a coordinate chart $\{\xi, \bar{\xi}, r, t\}$ by the tetrad

$$e^1(\bar{s}) = d(r\bar{\xi}) + \bar{\beta} dt + r\bar{\xi} f,\bar{\xi} dt$$
$$e^2(\bar{s}) = d(r\bar{\xi}) + \beta dt + r[-2\bar{f} + \bar{\xi} f,\xi] dt$$
$$e^3(\bar{s}) = -d(r\xi \bar{\xi}) + [\alpha + \xi r(2\bar{f} - \bar{\xi} f,\xi)] dt$$
$$e^4(\bar{s}) = dr + [-\epsilon + r f,\xi] dt$$

(12)
here \(\alpha \) and \(\epsilon \) are real constants, \(\beta \) is a complex parameter, \(\bar{f}(\bar{\xi}, t) \) is an arbitrary function of \(\bar{\xi} \) and \(t \) such that \(\bar{f}_{\xi \xi} \). The symbol \(\bar{s} \) is used in \(e^a(\bar{s}) \) to denote that we are dealing with anti-self-dual gravitational fields. In general there do not exist any relationships between the parameters and functions defining self- and anti-self-dual gravitational fields. Thus, at this level, the function \(\bar{f}(\bar{\xi}, t) \) is not the complex conjugate of the function \(f(\xi, t) \).

The non-vanishing connection 1-forms resulting from the tetrad (12) are

\[
\Gamma_{41} = 2(\bar{f} - \bar{\xi} \bar{f}_{\bar{\xi}} + \frac{1}{2} \bar{\xi}^2 \bar{f}_{\bar{\xi} \bar{\xi}}) \, dt \\
\Gamma_{34} - \Gamma_{12} = 2(\bar{f}_{\bar{\xi}} - \bar{\xi} \bar{f}_{\bar{\xi} \bar{\xi}}) \, dt \\
\Gamma_{31} = \bar{f}_{\bar{\xi} \bar{\xi}} \, dt.
\]

Substituting these expressions into the equations (5) one arrives at the curvature Weyl coefficients \(\bar{C}^{(a)} \),

\[
\bar{C}^{(a)} = 2(-\bar{\xi})^{(a-1)} \bar{C} \quad \bar{C} := -\frac{1}{r \psi} \bar{f}_{\bar{\xi} \bar{\xi} \bar{\xi}} \quad a = 1, \ldots, 5
\]

\[
\psi = \alpha + \beta \xi + \bar{\beta} \bar{\xi} + \epsilon \xi \bar{\xi}.
\]

Since the remaining \(\Gamma \)'s are equal to zero,

\[
\Gamma_{42} = 0 = \Gamma_{31} \quad \Gamma_{12} + \Gamma_{34} = 0
\]

the curvature of the self-dual sector vanishes, i.e. \(C^{(a)} = 0 \). Thus, the gravitational field defined by the tetrad (12) is of the type \([0] \otimes N \).

3. Linear superposition procedure

In order to determine a real solution of the Einstein equation, we propose to accomplish a linear superposition of tetrads of the form

\[
e^a = \frac{1}{2}[e^a(s) + e^a(\bar{s})].
\]

Requiring the fulfilment of the complex conjugation conditions \(e^2 = c.c. e^1, e^3 = c.c. e^3, e^4 = c.c. e^4 \), the tetrad \(e^a \) determines the real solution we are looking for.

According to (16), the 'generated' tetrad for the sought \(N \otimes N \) gravitational field is given by

\[
e^1 = d(r \xi) + \bar{\beta} \, dt + r[-f + \frac{1}{2} \xi (f_{\xi} + \bar{f}_{\bar{\xi}})] \, dt \\
e^2 = d(r \bar{\xi}) + \beta \, dt + r[-\bar{f} + \frac{1}{2} \bar{\xi} (f_{\bar{\xi}} + \bar{f}_{\bar{\xi}})] \, dt \\
e^3 = -d(r \bar{\xi}) + \{\alpha + r[\bar{\xi} f + \xi \bar{f} - \frac{1}{2} \xi \bar{\xi} (f_{\xi} + \bar{f}_{\bar{\xi}})]\} \, dt \\
e^4 = dr + [-\epsilon + \frac{1}{2} r (f_{\xi} - \bar{f}_{\bar{\xi}})] \, dt
\]
where now ξ and $\bar{\xi}$ are complex conjugate variables, r and t are real coordinates, $f(\xi, t)$ and $\bar{f}(\bar{\xi}, t)$ are complex conjugate functions, ϵ and α are real parameters, and β is a complex constant. The Ricci connections, associated with the tetrad (17), are equal to

$$\Gamma_{42} = [f - \xi f_{,\xi} + \frac{1}{2} \xi^2 f_{,\xi\xi}] \, dt \quad \Gamma_{34} + \Gamma_{12} = (f_{,\xi} - \xi f_{,\bar{\xi}}) \, dt$$

$$\Gamma_{31} = \frac{1}{2} f_{,\xi\xi} \, dt \quad \Gamma_{41} = [-\bar{f} - \bar{\xi} \bar{f}_{,\bar{\xi}} + \frac{1}{2} \bar{\xi}^2 \bar{f}_{,\bar{\xi}\bar{\xi}}] \, dt$$

$$\Gamma_{34} - \Gamma_{12} = (\bar{f}_{,\xi} - \xi \bar{f}_{,\bar{\xi}}) \, dt \quad \Gamma_{32} = \frac{1}{2} \bar{f}_{,\xi\xi} \, dt. \quad (18)$$

Finally, as one might expect, the Weyl curvature coefficients are

$$C^{(a)} = (-\xi)^{(a-1)} C \quad \bar{C}^{(a)} = (-\bar{\xi})^{(a-1)} \bar{C}$$

$$C = -\frac{1}{r \psi} f_{,\xi\xi} \quad \bar{C} = -\frac{1}{r \psi} \bar{f}_{,\bar{\xi}\bar{\xi}} \quad \bar{C}^{(a)} = c.c. \, C^{(a)} \quad a = 1, \ldots, 5 \quad (19)$$

$$\psi = \alpha + \beta \xi + \bar{\beta} \bar{\xi} + \epsilon \xi \bar{\xi}.$$

For these curvatures the Debever–Penrose equation possesses a quadrupole root. Thus, as it should be, the field obtained is of type N.

The metric structure, given by tetrad (17) and characterized by the Ricci connections (18) and the Weyl curvature coefficients (19), describes the most general real non-twisting type N solution of the Einstein equations [7]. In fact, to arrive at the standard description (see formula (8) of [7]) of these type N fields, which is given by the tetrad

$$e^1 = r \, d\xi + [\bar{\beta} + \epsilon \xi - rf] \, dt \quad e^2 = c.c. \, e^1$$

$$e^2 = r \, d\bar{\xi} + [\beta + \bar{\epsilon} \bar{\xi} - \bar{r} \bar{f}] \, dt$$

$$e^3 = \psi \, dt \quad \psi = \alpha + \beta \xi + \bar{\beta} \bar{\xi} + \epsilon \xi \bar{\xi}$$

$$e^4 = dr + [-\epsilon + \frac{1}{2} r (f_{,\xi} + \bar{f}_{,\bar{\xi}})] \, dt \quad (20)$$

one has to accomplish a tetrad ρ-gauge of the form

$$e^1 = e^1 - \rho e^4 \quad e^2 = e^2 - \bar{\rho} e^4 \quad e^3 = e^3 + \rho e^1 + \rho e^2 - \rho \bar{\rho} e^4 \quad e^4 = e^4 \quad (21)$$

with

$$\rho = \xi. \quad (22)$$

The tetrads appearing in the right-hand side of this transformation are assumed to be the original (generated) ones, while the primed tetrads correspond to those of equation (20).

Under a ρ-gauge, the Ricci connections transform as

$$\Gamma_{42}' = \Gamma_{42} + \rho (\Gamma_{12} + \Gamma_{34}) + \rho^2 \Gamma_{31} - d\rho \quad \Gamma_{41} = c.c. \, \Gamma_{42}$$

$$\Gamma_{12}' + \Gamma_{34}' = \Gamma_{12} + \Gamma_{34} + 2 \rho \Gamma_{31} \quad \Gamma_{34} - \Gamma_{12} = c.c. \, (\Gamma_{34} + \Gamma_{12}) \quad (23)$$

$$\Gamma_{31}' = \Gamma_{31} \quad \Gamma_{32} = c.c. \, \Gamma_{31}.$$
Therefore, as it should be, the connections associated with the primed tetrad (20) are
\[
\begin{align*}
\Gamma_{42'} &= -d\xi + f dt \\
\Gamma_{41'} &= -d\tilde{\xi} + \tilde{f} dt \\
\Gamma_{12'} + \Gamma_{34'} &= f_{,t} dt \\
- \Gamma_{12'} + \Gamma_{34'} &= \tilde{f}_{,\tilde{t}} dt \\
\Gamma_{31'} &= \frac{1}{2} f_{,\xi\xi} dt \\
\Gamma_{32'} &= \frac{1}{2} \tilde{f}_{,\tilde{\xi}\tilde{\xi}} dt.
\end{align*}
\]

The only non-vanishing curvature Weyl coefficient is \(C^{(1)} \),
\[
C^{(1)} = C = \frac{1}{r^2} f_{,\xi\xi\xi} \quad \overline{C}^{(1)} = \text{c.c. } C^{(1)}.
\]

Hence the direction \(e^{3'} \) is a quadrupole Debever–Penrose direction of the Weyl tensor, which reconfirms that the real generated gravitational field is of type \(N \).

4. Concluding remarks

The exhibited superposition procedure can be extended to construct other families of real spaces starting from one-sided gravitational fields. For instance, by using this procedure one can derive the well known real vacuum Kinnersley type D solutions. It would be of interest to use this superposition process to construct real solutions starting from general one-sided solutions (even of the special Petrov types) of the complex Einstein equations \([8,9]\); for instance, from a twisting type \(N \) field \(\otimes \) flat, or from complex \(N \otimes N \) or \(D \otimes D \) types.

References